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Abstract 

The curvature and Killing vector fields of a class of spacetimes generalizing Robertson-Walker 
ones (without any assumption on the fiber) is widely studied. Such spacetimes admitting non-trivial 
Killing vector fields are characterized, and in the globally hyperbolic case, explicitly listed. © 1999 
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1. Introduction 

A general ized Rober t son-Walke r  (GRW) spacetime is a warped product spacetime where 

the base is an open interval I of  ~,  with its usual  metric reversed (I ,  - dt2), the fiber is 

an m-d imens iona l  (connected) R iemann ian  manifo ld  (F ,  gF) and the warping funct ion is 

any positive funct ion f > 0 on I .  That  is, the G R W  spacetime is the product  manifold  

M = I × F endowed with the Lorentz metric 

g f  = - - d t  2 q- f2( t )gF,  (1.1) 
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where the natural projections rrl and ZrF of  I × F onto I and F,  respectively, have been 

omitted. GRW spacetimes include the usual Robertson-Walker (RW) ones, for which we 

will assume to have complete fibers of  constant curvature. GRW spacetimes were explicitly 

defined in [2], even though the properties of some warped spacetimes including them have 

been widely studied in General Relativity; we refer to [16] for motivation and a list of 

references about their properties. In this paper, we study the properties of  their curvature 

and Killing vector fields; as previous references on this topic (in dimension 4), see [7,11 ]. 

Other kind of  symmetries of  the curvature tensor can be found in [10] (see also [4,8]); for 

some properties of  the curvature of  submanifolds, see [ 1 ] and references therein. 

Our main goal in this paper is to find how to compute all their Killing vector fields. 

This problem can be stated as follows. Given a Killing vector field on the fiber of a GRW 

spacetime (or, when f is constant, on the base), a Killing vector field on all the spacetime 

can be induced naturally; let us call trivial these induced vector fields. Then, 

when are there non-trivial Killing vector fields, and in this case, how to construct them ? 

To answer it, an exhaustive study of  Killing vector fields is carried out. Such Killing 

vector fields have been studied locally in [7], for four-dimensional Lorentzian warped prod- 

ucts. Nevertheless, our study in the GRW (n-dimensional) case goes further, because we 

obtain explicitly both the Killing fields and the GRW spacetimes supporting them; more- 

over, under the minimum global assumption (completeness of  the fiber), strong uniqueness 

results are given. (On the other hand, we also point out a gap in [7], see the remark in 

Section 2.) 

This paper is organized as follows. In Section 2 we study Ricci curvature, and discuss 

when a GRW spacetime is Einstein or of  constant curvature. There are GRW spacetimes of  

constant curvature for all c ~ ~, and there are different ways of  writting them as GRW space- 

times (with different warping functions or non-isometric fibers). Nevertheless, in Corollary 

2.1 we show that the only complete ones have c > 0; moreover, the different ways of  writ- 

ting each model space of  constant curvature c > 0 as a GRW spacetime are characterized 
precisely. We finish Section 2 with two simple consequences in dimension 4, Corollaries 2.2 

and 2.3, which extend slightly [11, Theorem 4] and others [9]. 

Section 3 is technical, and we give there some general properties of  Lie derivatives 

and Killing vector fields in warped spacetimes. Our computations are sometimes par- 

allel to [7], even though ours remain more intrinsic and coordinate free. It is remark- 

able that we do not use special coordinates for dimension three, which can obscure the 

computations. In Section 4 the above question is answered, Theorem 4.1, Corollary 4.2, 
and Theorems 4.3, 4.5 and 4.7. When the spacetime is globally hyperbolic (i.e. the fiber 

is complete, even though the whole spacetime may not), the structure of  the GRW ad- 

mitting non-trivial Killing vector fields is determined very precisely, Corollaries 4.4, 4.6 
and 4.8. 

The techniques we use can be applied in more general semi-Riemannian manifolds (i.e., 

with any index, including the Riemannian case, where we have not found analogous results 
in the literature). So, in Section 3 we work with general warped products; for the sake 

of  completeness, in Section 3.2, the studied elemental properties of  Killing fields (some 
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of them well known) are proven or sketched from a general point of  view. It is worth 

pointing out that many of  the results through all the paper are valid (or easily adaptable) for 

warped Lorentzian or semi-Riemannian manifolds with base (I, + dt2), including all the 

"A I -spacetimes" in [7]. We introduce a parameter ti ---- :~ 1 to keep track of  this case: when 

ti = + 1 the result is intended for GRW spacetimes, and when ti ---- - 1 for the case with base 

(1, + dt2). Remarkably, the theorems of  Section 4 and Corollary 4.2 hold for 77 = - 1, but 

not the other corollaries, except in the (positive) definite case, i.e., when gF is Riemannian 

(see the comments between Theorem 4.3 and Corollary 4.4). 

2. Condit ions  on curvature 

All the objects will be assumed to be smooth, and all the manifolds connected. The 

causal character of  a tangent vector v E TpM,  p ~ M is time-like (resp. light-like, causal) 

if g(v, v) < 0 (resp. g(v ,  v) = 0, g(v ,  v) < 0); in general, we will follow the notation and 

conventions in [5,13]. 

The general expression of the curvature and Ricci tensors of a general warped product in 

terms of its base, fiber and warping function is well known [13, Chap. 7]. Particularizing 

for GRW spacetimes, one has that the Ricci tensor Ric satisfies: 

Ric(0t, 0,) = - m f " / f ,  

Ric(0t, X) = 0, (2.1) 

Ric(X, Y) = RiCF(X, Y) + t i ( f .  f "  + (m - 1 ) f  '2) • g F ( X ,  Y) ,  

where X and Y are tangent to the fibers, and RiCF is the Ricci of  the fiber. As we have already 

pointed out, the parameter ti has been introduced to obtain results including all warped semi- 

Riemannian manifolds with base (I, + dt2). So, the semi-Riemannian warped metric can be 

regarded as g f  = -7 /d t  2 + f 2 g F ;  when ti = + 1 the result is intended for GRW spacetimes 

(and all semi-Riemannian warped products with base (I, - dr2)), and when ti = - I, for 

semi-Riemannian warped products with base (I, + dt2). 

From these relations, it is not difficult to show that (M, g f )  is Einstein with Ric = m c . g / ,  

m > 1 (n = m + 1) iff (F,  gF) is Einstein with RiCF = (m -- I)CF • gF and the warping 

function satisfies: 

f "  = tic, f . f , ,  _ f , 2  = tiCF. (2.2) 
f 

If C, CF are allowed to vary freely, a straightforward computation shows that all the solutions 
of  one of  the equations (2.2) are equal to all the solutions of  the other one. On the other 

hand, Eqs. (2.2) are also equivalent to the corresponding set of  equations [3, Eq. (3)], whose 
solutions are tabulated in [3, p. 340]. The solutions to (2.2) can be written as shown in 

Table 1. 
The case m = I can be considered independently. Recall that the necessary and sufficient 

condition for the GRW spacetime to be Einstein (i.e., of  constant curvature) with curvature 

c is just the first equation (2.2). Note that one can assume CF = 0, but the second equation 
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Table 1 
Warping functions for m > 1; f > 0 on 1 _ R; constants: A , a , b  E R,  A , a  ~ 0; tic = f " / f ,  tiCF = 
f .  f , ,  _ f,2 

1 tic = a 2 > 0 t iC F = A 2 > 0 f ( t )  = (A /a )  cosh(at + b) 
2 tic = a 2 > 0 TIC F = 0 f ( t )  = exp(at + b) 
3 tlc = a 2 > 0 tiCF = --A 2 < 0 f ( t )  = (A /a )  sinh(at + b) 
4 tic = 0 tiCF = 0 f ( t )  = exp(b) 
5 r lc=O tiCF = - A  2 < 0  f ( t )  = A t + b  
6 tic = - a  2 < 0 tiCF = - -a  2 < 0 f ( t )  = (A /a )  cos(at + b) 

Table 2 
Warping functions for m = 1; f > 0 on 1 _c ~; constants: A1, A2, B, B*, a, b E ~ ,  a, A 2 + A~, B 2 + 

b 2,B* ~ 0 ; t i c = f " / f  

1 tic = a 2 > 0 f ( t )  = AI exp(at) + A 2 e x p ( - a t )  
2 t i c = O  f ( t ) = B t + b  
3 tic = - a  2 < 0 f ( t )  = B* cos(at + b) 

(2.2) may not hold (under the assumption of  constant curvature c). Then, for m = 1 we can 

consider the simpler table (Table 2). 

R e m a r k .  Wri t i ng  f = e °, the s e c o n d  ( a n d  then, bo th )  equa t i on  (2.2) is e q u i v a l e n t  to 

0 %  20 = ?lCF. (2.3) 

Eq.  (2.3) has  a l so  b e e n  c o n s i d e r e d  in [7, S e c t i o n  4.1] to s tudy  K i l l i ng  vec t o r  f ie lds .  E v e n  

t h o u g h  these  v e c to r  f i e l d s  wi l l  be  s t u d i e d  in the nex t  sec t ion,  w e  can  an t i c ipa te  that, c o m -  

p a r i n g  the  s ix  cases  o f  Table  1 w i t h  the f o r m u l a e  (60) in [7, p.  474], o u r  s ix th  case  has  no t  

b e e n  c o n s i d e r e d  there. 

If  we are interested in physical ly realistic GRW spacetimes, a very natural condition to 

impose is the t ime- l i ke  c o n v e r g e n c e  c o n d i t i o n  (TCC), or Ric(V, V) > 0 for all t ime-like 

V. This case can be characterized, replacing the equalities in the Ricci flat case (c = 0) by 

suitable inequalities; so, TCC (for r / =  +1)  is equivalent to 

f "  < 0, RicF(X, X )  > m ( f  . f "  - f , 2 ) .  g F ( X ,  X ) ,  

for all X tangent to the fiber. 

To see when the GRW spacetime must be of  constant curvature, one has to consider just  

the warping functions in the tables. Taking into account the expression of  the curvature 

tensor [13, 7.42] it is not difficult to check that the GRW has constant curvature c i f f  the 

fiber has constant curvature CF and the warping function is the corresponding one in the 

tables (note that these results can be extended to the Riemannian case, and compare with 

[6, Corollary 7.10; 4, Section III D]). In this case, the GRW spacetime is locally isometric 

to one of  the model  spaces: (i) a de  S i t t e r  spacetime of  curvature c, ~ * [ c ] ,  or universal 

covering of  the pseudosphere ~ [c] (ST* [c] = S T [c] for n > 2), when c > 0, (ii) L o r e n t z -  

M i n k o w s k i  spacetime ~7 when c = 0, and (iii) an an t i -de  S i t t er  spacetime of  curvature 
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e, HI 7. [c], or universal covering of the pseudohyperbolic space H~ [c], when c < 0. Now, 

using the results on completeness in [16] (see also [14]), one can characterize easily which 

of these model spaces can be written globally as GRW spacetimes. 

Corollary 2.1. 
(1) The onlyglobaldecompositions o f  the pseudosphere ~'~ [c], n > 2 (resp. ~2[c]; ~* ~ [c]). 

c > O, as a GRWspacetime is obtainedputting as fiber any usual Riemanian m-sphere o f  

curvature CF > 0 (resp. any circle o f  radius R > 0; R) and as warping function f (t) : 

cosh(v/-ct + b), for  any b E ~ (resp. f (t) = A exp(~Ft )  + B exp ( - , c~ t ) ,  for  

any A, B >0) .  

(2) The only global decompositions o f  Lorentz-Minkowski spacetime ~ as a GRW space- 

time is obtained as an usual product (a GRW spacetime with the Euclidean space R m 

as fiber and a positive constant as warping function). 

(3) No complete Einstein-Lorentzian manifold o f  negative Ricci curvature (in particular, 

H~ ~* [c], H~ [c]) admits a global decomposition as a GRW spacetime. 

Proof.  Assume m > 1. By Proposition 4.1 (or its Remark 4) in [16], the fiber must be 

complete and the only complete cases which occurs in Table 1 are the first and the fourth. 

So, only these two cases must be taken into account for the global decomposition, proving 
the last assertion (3). For (1) (resp. (2)) note that the case 1 (resp. 4) must be considered, and 

the fiber must be complete, simply connected and with constant curvature CF > 0 (resp. 

CF = 0), i.e., an m-sphere (resp. ~m), as required. 
When m = 1 the restriction A, B > 0 in (1) is imposed to obtain (causal) geodesic 

completeness (towards both the past and the future). Clearly, a proof completely analogous 
to the case m > 1 works for (2), (3) and ~2"[c]; for the pseudosphere ~ [ c ] ,  note that it is 

not simply connected, but the proof can be modified trivially. [] 

As an other very simple consequence, we can characterize the four-dimensional Einstein 

case as follows. 

Corollary 2.2. Let (M, g f  ) be a GR W spacetime o f  dimension n = 4. If  it satisfies the 

Einstein vacuum equations with cosmological constant )~ E ~, 

Ric - (¼R + )~)gf = 0 (2.4) 

(R scalar curvature) over some non-emp~ connected set U, then the curvature is constant 

on the open subset U' = Jrt(U) × 7rF(U)(~ U). 

Proof.  From (2.4) it follows that the GRW spacetime is Einstein at U. Given z ~ U 
an open neighborhood N: C U can be chosen such that N: = zrt(N=) × nF(N- ) ,  and 
N: preserves the structure of  GRW spacetime. Then, as N~ is GRW Einstein, the open 

subset ZrF (N:) C F is Einstein too. But all three-dimensional Einstein (semi-)Riemannian 
manifolds has constant curvature, and so is zrF (N:).  Moreover, the restriction of f to Jrt (N-) 

must belong to Table 1. 
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Varyingz 6 U andusingtheconnectednessofU,  wehavethatZrF(U) (=  I..Jz~UTrF(Nz) ) 

has constant gg-curvature. Analogously, using the continuity of the derivatives of f ,  the 

restriction of f to 7~ I (Nz)  must belong to (just) one of  the cases of  Table 1. Then, the 

corresponding warped product on U'  must be of  constant curvature. [] 

Clearly, the proof of  Corollary 2.2 can be extended to include all four-dimensional A l - 

spacetimes (compare with [11, Theorem 4]). 

The case in which (F, gF) is Einstein (even though not necessarily the whole GRW space- 

time is) can also be characterized as follows. Recall that, by Eqs. (2.1), 0t is a eigenvector 

of  the (1, 1) tensor Ric metrically equivalent to Ric; then, Ric is always diagonalizable. As 

usual, the GRW spacetime will be called a perfect fluid if all the eigenvectors orthogonal to 

0t at any (t, x) has the same eigenvalue p(t ,  x) .  

Corollary 2.3. The fiber of  a GRW spacetime of  dimension n > 4 is Einstein if  and only 

if  the spacetime is a perfect fluid; in this case p(t ,  x)  = p(t) .  

As a consequence, a globally hyperbolic GRW spacetime o f  dimension 4 is a perfect fluid 

i f  and only i f  it is a RW. 

Proof.  The first assertion is a straightforward consequence of  (2.1) and the fact that, in 

dimension m ___ 3, if RiCF = )~gF for some function ~ on F,  then )~ is constant. For the 

second assertion, recall that if the fiber is Einstein then it has constant curvature, because 

of  its dimension. [] 

Note that the global hyperbolicity in Corollary 2.3 is used just because in our definition 

of  RW spacetimes the fibers are assumed complete. 

3. Killing fields on semi-Riemannian warped products 

3.1. Notation and Lie derivatives 

First, we will develop the properties of  Killing vector fields on general warped product 

manifolds, and in the next section, we will focus our attention on GRW spacetimes. So, 

consider two semi-Riemannian manifolds (B, gB), (F, gF) with dimensions mB, mF > 0 
resp. (and arbitrary indexes); let f = e ° denote a positive function on B, and consider 
the warped metric g f  = gB + f2gF .  Given a vector field Z on B × F,  we will write 

Z = ZB + ZF with ZR = (zrR,(Z), 0), ZF = (0, ZrF,(Z)), the projections onto the natural 
foliations (bases {Bq =- B × {q}}, q e F and fibers {Fp =-- {p} x F}, p ~ B). Any covariant 

or contravariant tensor field 09 on one of  the factors (base B or fiber F)  induces naturally 
a tensor field on B × F,  which either will be denoted by the same symbol co, or (just 
if necessary) will be distinguished by putting a bar on it: ~.  Latin indexes a, b, c (resp. 

i, j ,  k) will run in 1 . . . . .  mR (resp. mR + 1 . . . . .  mB + mF)  and will be used for objects 
tangent to B (resp. F),  greek indexes u, 13 will run in 1 . . . . .  mR q- mF. So, Oa and Oi will 
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denote any coordinate vector field for B and F,  respectively, and 0~ any of  the previous two 

(considered, if necessary, on B x F). It is assumed to be the sum in repeated indexes. The 

symbols L 8, L F and L represent the Lie derivatives on B(--  Bq, q ~ F),  F ( - -  Fp, p 6 B) 

and B × F,  respectively. It is not difficult to check that LZBgF ---- LzFgR = 0, and as a 
consequence, we have the following lemma. 

L e m m a  3.1. For any vec tor fe ld  Z on B x F:  

L z g  f = LzRg8  + Z B ( f 2 ) g F  q- f 2 L Z F g F .  (3.1) 

On the other hand, one has: 

LzBg l~ (~ ,  0[~) = LBRgB(Oa, Ol~) if Or, fl = a, b, 

LzBg~(O~, 0[~) = gs(O,,, [Oi, ZB]) if ot = a,/~ = i, (3.2) 

Lz~g~(O~,O[~)=O if ~,/4 = i, j .  

(Note that at each (p, q) 6 B x F,  we write Lz8 B g8 = LzBBq gt3, where Zsq is the restriction 

of ZB to each base Bq.) Writting an expression analog to (3.2) for the fiber, one has the 
following lemma. 

L e m m a  3.2. Let Z s ,  ZF be two vector fields on B x F such that ZB (resp. ZF)  lies in 

the foliation o f  the bases (resp. fbers) .  Then 

L z # g B ( . ,  .) = LBRgB( ", ") + gB(' ,  In'F,('), ZB]) + gB([rCF.(.),  Zl~], "), 

LZFgF(' ,  ") F = LZFgF(' ,  ") + gF(',  [~B*('), ZF]) + gF([TrB,('), ZF], "). 
(3.3) 

3.2. Elemental properties 

We begin considering properties which are valid in the more general context of  subman- 

ifolds (compare with [6, Lemma 7.11]). So, take a non-degenerate submanifold S of  an 

arbitrary Lorentzian or semi-Riemannian manifold (M, h). 

L e m m a  3.3. I f  K is a Killing vector field on (M, h) which, at all the points o f  the sub- 

manifold S, is tangent to S then the restriction K Is is a Killing vector f e l d  on S. 

This result is well known (see, e.g. [13, p. 259]), and can be easily proven taking into 
account that the local fluxes of K Is are the restrictions of  the ones for K, and thus, consists 
of isometries. Then, for warped products, we have the following proposition. 

Proposi t ion 3.4. I f  a Killing vectorfield K on (B × F, g f  ) lies in one of  the two natural 

foliations, then its restriction to each leaf  o f  this foliation is a Killing vector field. 
Moreover, i f  it lies in the foliation o f  the bases, then K ( f )  =-- O. 
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Proof.  The first assertion is straightforward from Lemma 3.3. For the last one, note that, 

from (3.1), 

0 = LKg  f = LKgB + K ( f  2) • gF (3.4) 

and, by using (3.2), the last two terms vanish (it also reproves the first assertion). [] 

Remarks 
(1) Clearly, i f  K is a vector field on B × F tangent to the bases with K ( f )  = 0 (resp. 

tangent to the fibers) and such that its restriction to each Bq (resp. Fp) is Killing, it 

may not be Killing on all B x F (note that L z8 g B ( Oa , Oi ) in (3.2) may not vanish). The 

necessary and sufficient condition will be given in Corollary 3.9 and Proposition 3.7. 

(2) Lemma 3.3 can be extended easily to conformal Killing vector fields. Moreover, i f  C is 

a conformal Killing vectorf ield on (B × F, g f )  tangent to the bases with conformal 

expansion tr , 

L e g  f = 2cr g f ,  (3.5) 

then C restricted to each base Bq is conformal Killing with C I Bq (0)  = t3r. B y  Lemma 3.1, 

no conformal Killing vector on ( B x F, g f  ) can be tangent to the fibers, but the Killing 

ones. 

If  the Killing vector field K is not tangent to the submanifold, we can consider its 

projection Ks.  But this projection is not a Killing vector field in general. 

Lemma 3.5. 
(1) I f  K is a Killing vector field on (M, h) and S is a totally geodesic submanifold, then 

Ks  is a Killing vector f ieM on S. 

(2) I f  C is a conformal-Killing vectorfield on (M, h) and S is totally umbilical, then Cs is 

a conformal-Killing vectorfield. 

Proof.  For (2), let 7-[ be the mean curvature vector of  the submanifold and ~r be the conformal 

expansion of C. If  {Nc} is a local basis of  the orthonormal bundle to S, then Cs = C - 
habh(Na, C)Nb, and its Lie derivative on any coordinate field Ok on S satisfies 

Lcsh(Oi,  Oj) = Lch(Oi,  Oj) - L(habh(Na,C)Nb)h(Oi, Oj) 

= 2crh(Oi, Oj) - habh(Na, C)(h(VaiNb,  Oj) q- h(V~jNb, Oi)) 

= 2(tr -F h(7-[, C))h(Oi, Oj); (3.6) 

so, Cs is conformal Killing. For (1), note that, in (3.6), cr vanishes for a Killing vector field, 
and if S is totally geodesic, 7-/vanishes too. [] 

R e m a r k .  From (3.6), when K is Killing and S totally umbilical, Ks  is Killing iff h(7-[, K)  
vanishes; in particular, it occurs in the extremal case 7-[ = O. 
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Now, as a straightforward consequence for warped products (compare with [6, Lemma 

7.11; 7, p. 471]): 

Proposition 3.6. l f  K is a Killing vectorfield on (B × F, g f  ), then KB is a Killing vector 

field on each Bq, and K F is a conformal-Killing vector field on each Fp. 

R e m a r k .  In this case, neither K8 is Killing for  the warped metric nor it satisfies K R ( f ) = 

O, in general. 

The following property is more specific of  warped products. 

Proposition 3.7. Let A, V be vector fields on B, F, and A, V the natural vector.fields 
induced on (B × F, g f  ), respectively Then, 

(1) A- is Killing on B × F i f  andonly  if  A is Killing on B and A ( f )  = O. 

(2) V is Killing on B × F if  and only if  V is Killing on F. 

Proof.  Both implications to the right are yielded by Proposition 3.4. For the converse, use 

Lemmas 3.1 and 3.2. [] 

R e m a r k .  For properly (i.e., non-Killing) conformal Killing vector fields, it is not difficult 

to check: 

(1) A is properly conformal Killing on B × F iff A is properly conformal Killing on B and 

A(O) = or, where cr is the conformal expansion (3.5). 

(2) I f  V is any vector field on F (conformal or not) then V is never a properly conformal 

Killing on the warped product (see Remark 2 to Proposition 3.4). 

3.3. Canonical expressions for  Killing vector fields 

Let K~7, ~ 6 {1 . . . . .  mB} be a basis of  Killing vector fields of  (B, gB), and CT, i c 
{~B + 1 . . . . .  ~B  + ~ F }  be a basis of conformal-Killing vector fields of (F, gF),  with 
L F cT gF = 2~rT gF. If K is a Killing vector field on (B × F, g f ) ,  then, by Proposition 3.6, 

there are functions ) J  = ~?(x k) (resp. L~ -- ) J (x ' ) )  depending just on the variables {x k } of 

F (resp. {x"} of B) such that KB = )~(x~)K~ (resp. K F  ---- ~.i'(xc)Ci ), i.e., 

K = )~Y(xk)K-d + ~](xC)C~. (3.7) 

Next, we will characterize the Killing fields among all vector fields on B × F which can 
be written as in (3.7). First, note that if 4~, Z and T are, respectivelly a function, a vector 
field and a 2-covariant tensor field on M, then, 

L4~zT(., .) = (bLzT( . ,  .) + dO(')  ® T ( Z ,  .) + T ( Z ,  .) ® d~b(.). (3.8) 

Note that, by Lemma 3.2, LK~ gB = L B K~ gB(----- 0). Thus, by using (3.7) and (3.8): 

LKsgB( ' ,  ") = d )~ (') ® gB(K~ , .) + gB(K~ , -) ® d)~ ~ ('). (3.9) 
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Analogously for KF, 

LKFgF(' ,  ') = 2k T ~rT gF(',  ") + d )~i (') ® gF(Ci ,  ") + gF(Ci ,  ") ® dk i ('). (3.10) 

Rewriting the 1-forms g s ( K a ,  ") -- lg-d, gF(C~, ') -- C~, we obtain from (3.1), (3.9), and 
(3.10): 

LKg f = 2 f2 (KB(O)  + )vi crT )gF 

+ (  d)va ®/~7 q- /~7 ® d)~)-{- f2 (  d)J ®Ci  +CT ® d~'i) • (3.11) 

Finally, taking into account the dependences of the functions k's in (3.7), we obtain the 
following result. 

Proposition 3.8. Let K be a vectorfield on (B x F, g f  ) as  in (3.7). Then, K is a Killing 

vector field i f  and only if the following two relations hold: 

KB(0) +)J~r  i = 0 ,  /(7/ ® d)va + f  2d)-~ ®C~ = 0 .  (3.12) 

The following simple consequence of Proposition 3.8 complements Propositions 3.4 and 
3.7 (see also the remarks below Propositions 3.4 and 3.6). 

Corollary 3.9. Let K be a Killing vector field on ( B x F, gf )  which lies everywhere in 

the foliation o f  the bases (resp. fbers) .  Then there exists a Killing vector field A on B (resp. 

g on F) such that K = A and A ( f )  = 0 (resp. K = V). 

Proof. When K lies in the bases (K = Ks),  k ~ ---- 0, and from the second equation 
(3.12), the sum/(~ @ dk ~ is null. But, it implies dk ~ = 0 because the 1-forms/~ are 

independent. Thus, A = k ~ Ka ,  where k a E R. The assertion on K ( f )  can be proven 
either from the first equation (3.12) or from Proposition 3.7. 

When K lies in the fibers, reasoning as before the k i are constants. Then, use the remark 
(2) below Proposition 3.7. [] 

Remark. A more direct proof  to Corollary 3.9 can be given from Lemma 3.2. Note that, 

for  K as in (3.7)." 

[Tt'F.('), KB] = dk a (-) ® K a , [:rB,(.), KF] = dk T (.) ® Ci. 

From these formulae and Lemmas 3.1 and 3.2, it is clear that if K : K B (resp. K = K F ), 

then the k ~ (resp. k ~ ) are constant, from which the result follows. 

4. Classification results for GRW 

Now, come back to warped products with one-dimensional base. Even though we will 
consider GRW spacetimes (I  × F, g f), the parameter 0 in Section 2 will be used again to 
keep track of warped spacetimes with base (I, + dt2). For GRW spacetimes, one has 

K~ = a,, Ra = - o  at ( m s  = 1). 
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We will call trivial to the Killing vector fields on M obtained from Killing vector fields on 

the base or fiber by using Proposition 3.7 (or linear combinations of  such vector fields); 
next, we will look for the non-trivial ones. Putting X = )~J, d)~ ~ = ;~T' dt, Eqs. (3.12) can 
be rewritten as 

Z(xk)O'(t) + )~?(t)crT(x k) ---= 0, 71 dg.(x k) = (./:2. Z~')(t)~r(x~). (4.1) 

As the 1-forms C~(x k) are independent, the separation of variables in the second equation 

(4.1) implies 

( f 2 . )  T')(t) = a ~ (constant), (4.2) 

and thus, the second equation (4.1) is equivalent to 

t 

X?(t) = a? l f - 2  +b  T, and a~Ci = r /vFx ,  (4.3) 

I0 

for some t0 ~ I ,  a ~, b T E R (V F is the gF-gradient). When ;~ -- 0, Corollary 3.9 applies, 

and the Killing field is trivial; otherwise, one can derive with respect to t the first equation 
(4.1) to obtain, at the points where 3. is not null, 

( f 2 .  O")(t) = - a  T ~r~ (xk) ~ OCF (constant). (4.4) 

That is, Eq. (2.3) holds, and we have the following theorem. 

T h e o r e m  4.1. If a GRW spacetime (or warped ~ = -4-1 semi-Riemannian manifold) admits 
a non-trivial Killing vectorfield then f must be one of the functions in the tables of Section 2. 

In particular, for dimension n = 2 the GRW spacetime has constant curvature. So. this 

dimension can be characterized directly. 

Coro l la ry  4.2. A simply connected two-dimensional GRW spacetime (or warped 77 = ± l 
semi-Riemannian manifold) admits a non-trivial Killing vector field if and only if it has 
constant curvature; in this case, the dimension of Killing vector fields is 3. 

In what follows, we will assume n > 2. 

Now, put C* -- b~CT; by (3.7) and (4.3), 

t 

K ( t , x  k) =;~(xk)Ot+rl f . v F ; ~ +  f - 2  C*. (4.5) 

On the other hand, consider the gF-Hessian of ;L, HeSSF;~(V, W) = gF(V~vF)~. W) 
( =  (1/2)LFFzgF(V, W)). The vector field C =-- a'CT is conformal with expansion cr = 

aTcr~, and by the second equality (4.3) and the last one in (4.4): 

HessF,k + CF;~gF = 0 (4.6) 
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Summing up, we have obtained that any (non-trivial) Killing vector field K can be written 

as in (4.5), where f belongs to Table 1, )~ is an eigenfunction of the gF-Hessian, and C* is 
a gF-conformal  Killing vector field. Next, we will consider the vector fields given by (4.5), 

and characterize which of them are non-trivial Killing. The following three cases will be 

considered, depending on the cases of  the warping function f = e 2° in Table 1. 

(A) Cases cF 5 ~ 0. We can assume that X is not constant; otherwise, 3. would be null by 

(4.6), and the corrresponding Killing vector fields (4.5) would be trivial, by Corollary 3.9. 
So, C --- o v F x  is not identically null. Note that from (4.6), C is conformal with expansion 

a = --rlCFX, and we can assume then that C is the first of  the C~ 's. So, all the a ~ are null, 

but the first one, which is equal to 1, and the second equation (4.1) holds. 
For the first equation (4.1), it is straightforward to check that its left member  is independent 

of  t (derive it and obtain 0 by using the expression of the conformal expansion a ,  and (2.3)). 

Then, this equation is satisfied iff the left member  vanishes identically for t = to, i.e., iff 

Ot (to))~(x k) + a * (x k) =-- O, (4.7) 

where a* is the conformal expansion of C*. But then 17CFff* --  O ' ( t o ) a  = 0 ,  and C* - 

o(O'(to)/cF)C is a (trivial) Killing vector field. We can summarize this as follows. 

Theorem 4.3. Consider a G R W  spacetime (or warped O = -¢- 1 semi-Riemannian manifold) 

with warping function f in Cases 1, 3, 5 or 6 of  Table 1. Then, its Killing vector fields are 

given by 

O'(to) 
K( t ,  x ~) = X(xk)Ot + + ~ f - 2  vF) .  + T, 

CF to 
(4.8) 

where )~ satisfies (4.6) and T is a trivial Killing vector field (perhaps null); to ~ I. 

The existence of solutions to (4.6) is a classical problem in Riemannian geometry. When 
(F, gF) is complete, there are powerful results characterizing the only possible cases (as a 

standard reference, see [17]). So, the following consequence can be stated. (To our knowl- 
edge there are no such powerful results when (F, gF) is Lorentzian, and thus, no analogous 
result hold for 0 = - 1 spacetimes.) 

Corollary 4.4. Consider a globally hyperbolic GRW spacetime (I  z F, g t )  admitting a 

non-trivial Killing vector f ieM K. 

(a) I f  f lies in Case 1 o f  Table 1 then the fiber is a usual round sphere 5 m [CF], m >_ 2, for  
the corresponding curvature CF > O. Thus, i f  the interval I is maximal (I  = •) the 

spacetime is 5n l [c], with the curvature c > 0 asssociated to f . 
(b) I f  f lies in Cases 3, 5 or 6 then the fiber (F, gF) splits as a warped product ~ z F', 

with base (R, ds2), f iber any complete Riemannian manifold (F' ,  gF') and warping 

function either fF ( s )  = A c o s h ( ~ ,  s), or fF ( s )  = A exp(C"zb7 • s), Vs ~ R, for  
some constant A > O. 
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The proof is a consequence of Theorem 4.3 and [17, Theorem 2]. 
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Remarks.  
(1) For the sphere ~m, the m + 1 projections on the coordinate axis are m + 1 solutions o f  

(4.6), which yield a basis for  its conformal Killing vector fields modulo Killing vector 

fields. When ~'~ is written as a warped product, these m + 1 solutions yield a basis of. 

its non-trivial Killing vector fields modulo the trivial ones, by using (4.8). 
(2) In the case (b) of  Corollary 4.4, when (F' ,  g F') is an hyperbolic spacetime H ''~ I [ A 2 c F ] 

( re sp. R" -1  ) then ( F , g F ) = H'n [ C F ], and the spacetime is H~ * [c], for  the correspond- 

ing c < O. Note that the m + I independent solutions o f  (4.6)for Hm[CF] can be 

obtained in a similar way than that for  the sphere, considering H"  as a hypercuadric 

o f  Lorentz-Minkowski spacetime ~t{. At any case, the solution X associated to K can 

be chosen as the natural projection ~ x F' ~ F'. 

(B) Case 4, 0' = 0. Again we can assume that k is not constant (otherwise kOt is trivial, 
and by Corollary 3.9, so is K). By reasoning as above, the second equation (4.1) is always 
satisfied, and the first equation holds iff (4.7) holds, i.e., iff C* is Killing. 

Theorem 4.5. Consider a GRWspacetime (orwarped O = 4-1 semi-Riemannian manifold) 

with a constant warping function fo, Case 4 o f  Table 1. Then, its Killing vector fields are 

given by 

K( t ,  x k) = )~(xk)Ot + O(t - t0)fo2VFk + T, (4.9) 

where k has null Hessian and T is a trivial Killing vector field, to E ~. 

Remark.  The non-zero parallel gradient field ~ F  )~ on the Riemannian manifold ( F, gF ) 

yields a local metric splitting F = ~ x F', gF = d s2 + gF' with vF)~ = 0~; if gF is 

complete, the splitting is global. For ~ = - 1 semi-Riemannian manifolds, this result holds 

just under additional assumptions; e.g., when g F ( V F k ,  V F k )  5~ 0 [18] (see also [15] 

for  dimension m = 2). 

Then, as a consequence, we have the following corollary. 

Corollary 4.6. Consider a globally hyperbolic GRW spacetime with a constant warping 

function fo. I f  it admits a non-trivial Killing vector field K then the fiber splits metrically 

F = R × F', gF = d s 2 + g F ' , a n d  

K = (as + b)Ot + (a fo2 t  + a')Os + T', (4.10) 

where a, a' ¢ R, a ~ O, and T'  is a trivial Killing vector field, obtained from a Killing 

vector field on F t. 

Remark.  If  the dimension o f  the non-trivial Killing vector fields modulo the trivial ones is 

l, then F splits metrically as a product F = R I x F'  and the functions )~ in (4.9) are the 

1-forms on ~/. 
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(C) Case 2, 0'  --  0~ 5~ 0 (::~ CF = 0). Consider first that )~ is a (non-zero) constant. Note 
that Eq. (4.6) is trivially satisfied, and (4.1) holds iff Eq. (4.7) holds. Then, C* must be 
(properly) homothetic. Thus, this case ~. constant occurs iff there exist a homothetic vector 

field H,  LHgF = 2hogF, ho E ~ - {0}, and 

K = hoot - O~H. (4.11) 

If  )~ is not constant then vF,~ is a non-zero parallel field by (4.6), and C* is properly 

conformal with a*  = -~0~ by (4.7). 

T h e o r e m  4.7. Consider a GR W spacetime (or warped 0 = d: 1 semi-Riemannian manifold) 

with a warping function f in Case 2 of  Table 1, O' -- 0~(~ 0). Then, any non-trivial 

Killing vector field K is given by (4.5), with )~ and C* satisfying one of the following two 

possibilities: 

(a) ~. is constant, C* is homothetic, C* = H, LHgF = 2hogF, ho ~ ~ - {0}, and K 

satisfies (4.11). 
(b) v F  ~. is a non-zero parallel field, and C* is properly conformal with expansion a* = 

-0~ • )~. 

Homothetic vector fields yields a Lie algebra of  dimension at most one bigger than 
Killing vector fields. If  (F, gF) is a complete Riemannian manifold then either it is flat or 

all its homothetic vector fields are Killing [12, p. 242]. Thus, when the GRW is globally 
hyperbolic, the case (a) in Theorem 4.7 can be applied only if the universal covering of 
(F, gF) is ~m. 

On the other hand, in the case (b) of  Theorem 4.7, the function ~. induces a (local) metric 

splitting ~ x F ' ,  as pointed out in the remark below Theorem 4.5. Thus, the projection of C* 

onto each slice {so} x F '  yields a homothetic vector field of  this slice. If  (F, gF) is complete 

then (F',  gF') is complete too, and the splitting is global; so, as before, the existence of  this 
non-Killing homothetic vector field on (F',  gF') implies that it is flat. 

Summing up, we obtain the following result. 

Coro l la ry  4.8. Consider a simply connected globally hyperbolic GRW spacetime with a 

warping function f in Case 2. I f  it admits a non-trivial Killing vector field then its fiber is 
~m, and thus, the spacetime is an open subset of a pseudosphere 5~ [c], c > 0. 
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